Termination w.r.t. Q of the following Term Rewriting System could be disproven:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH(n__cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
LENGTH(n__cons(X, Y)) → S(length1(activate(Y)))
LENGTH1(X) → LENGTH(activate(X))
LENGTH1(X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
FROM(X) → CONS(X, n__from(n__s(X)))
ACTIVATE(n__from(X)) → FROM(activate(X))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH(n__cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
LENGTH(n__cons(X, Y)) → S(length1(activate(Y)))
LENGTH1(X) → LENGTH(activate(X))
LENGTH1(X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
FROM(X) → CONS(X, n__from(n__s(X)))
ACTIVATE(n__from(X)) → FROM(activate(X))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 8 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(X) → LENGTH(activate(X))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH1(X) → LENGTH(activate(X)) at position [0] we obtained the following new rules:

LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__nil) → LENGTH(nil)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__nil) → LENGTH(nil)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH1(n__nil) → LENGTH(nil) at position [0] we obtained the following new rules:

LENGTH1(n__nil) → LENGTH(n__nil)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(n__nil) → LENGTH(n__nil)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
The remaining pairs can at least be oriented weakly.

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( from(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( cons(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/11\
\00/
·x2

M( n__from(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( n__cons(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/11\
\00/
·x2

M( activate(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( s(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( n__s(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( n__nil ) =
/0\
\0/

M( nil ) =
/0\
\0/

Tuple symbols:
M( LENGTH(x1) ) = 0+
[1,0]
·x1

M( LENGTH1(x1) ) = 0+
[1,1]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

activate(X) → X
from(X) → cons(X, n__from(n__s(X)))
niln__nil
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
niln__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X


s = LENGTH1(activate(n__from(X'))) evaluates to t =LENGTH1(activate(n__from(n__s(activate(X')))))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

LENGTH1(activate(n__from(X')))LENGTH1(from(activate(X')))
with rule activate(n__from(X'')) → from(activate(X'')) at position [0] and matcher [X'' / X']

LENGTH1(from(activate(X')))LENGTH1(cons(activate(X'), n__from(n__s(activate(X')))))
with rule from(X) → cons(X, n__from(n__s(X))) at position [0] and matcher [X / activate(X')]

LENGTH1(cons(activate(X'), n__from(n__s(activate(X')))))LENGTH1(n__cons(activate(X'), n__from(n__s(activate(X')))))
with rule cons(X1, X2) → n__cons(X1, X2) at position [0] and matcher [X2 / n__from(n__s(activate(X'))), X1 / activate(X')]

LENGTH1(n__cons(activate(X'), n__from(n__s(activate(X')))))LENGTH(n__cons(activate(X'), n__from(n__s(activate(X')))))
with rule LENGTH1(x0) → LENGTH(x0) at position [] and matcher [x0 / n__cons(activate(X'), n__from(n__s(activate(X'))))]

LENGTH(n__cons(activate(X'), n__from(n__s(activate(X')))))LENGTH1(activate(n__from(n__s(activate(X')))))
with rule LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.