Termination w.r.t. Q of the following Term Rewriting System could be disproven:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH(n__cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
LENGTH(n__cons(X, Y)) → S(length1(activate(Y)))
LENGTH1(X) → LENGTH(activate(X))
LENGTH1(X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
FROM(X) → CONS(X, n__from(n__s(X)))
ACTIVATE(n__from(X)) → FROM(activate(X))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH(n__cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
LENGTH(n__cons(X, Y)) → S(length1(activate(Y)))
LENGTH1(X) → LENGTH(activate(X))
LENGTH1(X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
FROM(X) → CONS(X, n__from(n__s(X)))
ACTIVATE(n__from(X)) → FROM(activate(X))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 8 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The graph contains the following edges 1 > 1
- ACTIVATE(n__from(X)) → ACTIVATE(X)
The graph contains the following edges 1 > 1
- ACTIVATE(n__s(X)) → ACTIVATE(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(X) → LENGTH(activate(X))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH1(X) → LENGTH(activate(X)) at position [0] we obtained the following new rules:
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__nil) → LENGTH(nil)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__nil) → LENGTH(nil)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH1(n__nil) → LENGTH(nil) at position [0] we obtained the following new rules:
LENGTH1(n__nil) → LENGTH(n__nil)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(n__nil) → LENGTH(n__nil)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
The remaining pairs can at least be oriented weakly.
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
activate(X) → X
from(X) → cons(X, n__from(n__s(X)))
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
s = LENGTH1(activate(n__from(X'))) evaluates to t =LENGTH1(activate(n__from(n__s(activate(X')))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [X' / n__s(activate(X'))]
Rewriting sequence
LENGTH1(activate(n__from(X'))) → LENGTH1(from(activate(X')))
with rule activate(n__from(X'')) → from(activate(X'')) at position [0] and matcher [X'' / X']
LENGTH1(from(activate(X'))) → LENGTH1(cons(activate(X'), n__from(n__s(activate(X')))))
with rule from(X) → cons(X, n__from(n__s(X))) at position [0] and matcher [X / activate(X')]
LENGTH1(cons(activate(X'), n__from(n__s(activate(X'))))) → LENGTH1(n__cons(activate(X'), n__from(n__s(activate(X')))))
with rule cons(X1, X2) → n__cons(X1, X2) at position [0] and matcher [X2 / n__from(n__s(activate(X'))), X1 / activate(X')]
LENGTH1(n__cons(activate(X'), n__from(n__s(activate(X'))))) → LENGTH(n__cons(activate(X'), n__from(n__s(activate(X')))))
with rule LENGTH1(x0) → LENGTH(x0) at position [] and matcher [x0 / n__cons(activate(X'), n__from(n__s(activate(X'))))]
LENGTH(n__cons(activate(X'), n__from(n__s(activate(X'))))) → LENGTH1(activate(n__from(n__s(activate(X')))))
with rule LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.